Flapping wing vehicle for Mars exploration

Research Project - financed by Croatian Scientific Foundation (IP-2016-06-6696)
NUMECALEMBEDDED NUMECA4EMBEDDED
'Numerically efficient computational algorithms for embedded multi-physical systems in vector spaces and manifolds'

Partner institutions:

- Technische Universität München (TUM), Germany
- Institute for Mechanical Systems, ETH, Zürich
- Politecnico di Milano (POLIMI), Italy
- Institute of Mathematics, Martin Luther University, Germany
- Robotics Institute, School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, China
- Institute of Robotics Austria, Johannes Kepler University, Austria
- Faculty of Science, Department of Mathematics, University of Zagreb, Croatia
- Department of Continuum Mechanics and Structures, UPM, Madrid

100 godina Fakulteta Steuačilista u u Zagrebu Sveucílista u Zagrebu 100 Years of Faculty of Mechanical Engineering
and Naval Architecture University of Zagreb

- Low atmospheric density on Mars (air density is 1.3\% of that on Earth and gravitational acceleration is $\mathbf{3 8 \%}$ of Earth's) \rightarrow low Reynolds number
$>$ Conventional aircraft designs have limitation
- fixed wing vehicles must fly fast to avoid stall (>350 kmph) \rightarrow passing over regions too quickly, cannot successfully land on uneven terrain for the mission stop or to refuel; 'hard landings'
- rotary wing vehicles allow for take-off and landing / but rotor tips rapidly exceed the Martian lower speed of sound \rightarrow rotational speeds insufficient to lift; difficult to manoeuvre

Why flapping wings?

- high lift generating capability at low Reynolds number \rightarrow allow to fly slow, manoeuvre easily and perform vertical take-off and landing
- reciprocating nature of flapping wings \rightarrow resonant operation \rightarrow energy efficiency; harvesting energy from the ambiental flow
- should better sustain collisions with hard environment \rightarrow more robust operation; mission planning activities enhanced

Numerical example: Butterfly wing

- Velocity field distribution for butterfly wing model

100 godina Fakulteta strojarstva i brodogradnje
Sveucuilista u Zagrebu Sveučilišta u Zagrebu 100 Years of Faculty of
Mechanical Engineering Mechanical Engineering
and Naval Architecture and Naval Architecture University of Zagreb

Fluid - Flying vehicle / 'hybrid' modelling:

- differential-geometric reductions (Lie groups) + numerical discretisation (BEM)

- Rigid vehicle + fluid (planar case)

100 godina Fakulteta strojarstva i brodogradnje
Sveucuilista u Zagrebu Sveučilišta u Zagrebu 100 Years of Faculty of
Mechanical Engineering Mechanical Engineering
and Naval Architecture and Naval Architecture

Fluid volume discretization -> Boundary surface discretization

- Multiple orders of magnitude fewer variables

- Problems with mesh deformations
- Stability/convergence problems
- Calculating large fluid domain
- Computational time measured in days

- Calculating only effects of the fluid on the body
- Computational time measured in minutes
- Can be used in optimal control/design loop

Variations of wing mechanism....(initial study)

Dynamic coupling with fluid flow

- MBDyn, OpenFOAM (open source)

100 godina Fakulteta strojarstva i brodogradnje
Sveučilišta u Zagrebu
Sveučilišta u Zagrebu
100 Years of Faculty of Mechanical Engineering University of Zagreb

Experiments .../collaboration with:

- Beijing University of Aeronautics and Astronautics (BUAA)
- Harbin Institute of Technology / Mars chamber

FSB

100 godina Fakulteta strojarstva i brodogradnje Sveučilišta u Zagrebu 100 Years of Faculty of Mechanical Engineering and Naval Architecture University of Zagreb

